[1]Kieser TM, Lewin AM, Graham MM, et al. Outcomes associated with bilateral internal thoracic artery grafting: the importance of age. Ann Thorac Surg. 2011;92(4):1269-1275.
[2]Liu Y, Chen JR, Yang Y, et al. Improved blood compatibility of poly(ethylene terephthalate) films modified with L-arginine. J Biomater Sci Polym Ed. 2008;19(4):497-507.
[3]Duan X, Lewis RS. Improved haemocompatibility of cysteine-modified polymers via endogenous nitric oxide. Biomaterials. 2002;23(4):1197-1203.
[4]Stanley JC, Burkel WE, Ford JW, et al. Enhanced patency of small-diameter, externally supported Dacron iliofemoral grafts seeded with endothelial cells. Surgery. 1982;92(6):994-1005.
[5]曹海建,钱坤.人造血管的现状及其研究进展[J]. 纺织科技进展, 2004(2): 31-33.
[6]霍丹群,陈柄灿,侯长军,等.人工血管及其研究进展[J]. 中国医疗器械杂志,2004,28(3): 200-202.
[7]Wu T, Jiang B, Wang Y, et al. Electrospun poly(L-lactide-co-caprolactone)/collagen/chitosan vascular graft in a canine femoral artery mode. Journal of Materials Chemistry B. 2015; 3(28): 5760-5768.
[8]Huang C, Chen R, Ke Q, et al. Electrospun collagen-chitosan- TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids Surf B Biointerfaces. 2011;82(2):307-315.
[9]Cattaneo I, Figliuzzi M, Azzollini N, et al. In vivo regeneration of elastic lamina on fibroin biodegradable vascular scaffold. Int J Artif Organs.2013;36(3):166-174.
[10]de Valence S, Tille JC, Giliberto JP, et al. Advantages of bilayered vascular grafts for surgical applicability and tissue regeneration. Acta Biomater. 2012;8(11):3914-3920.
[11]谭玉静,洪枫,邵志宇. 细菌纤维素在生物医学材料中的应用[J]. 中国生物工程杂志, 2007,27(4):126-131.
[12]洪枫. 用于急性创伤的细菌纤维素基抗菌干膜及其制备方法和应用: CN, ZL201110009676.3[P]. 中国发明专利, 2011.
[13]Wei B, Yang G, Hong F. Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydrate Polymers. 2011; 84(1): 533-538.
[14]Petersen N, Gatenholm P. Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol. 2011;91(5):1277-1286.
[15]Gatenholm P, Klemm D. Bacterial nanocellulose as a renewable material for biomedical applications. Mrs Bulletin. 2010; 35(3):208-213.
[16]洪枫,蒋燕光,陈琳,等. 小径纳米纤维素管的生物制备及其表征[J]. 纤维素科学与技术, 2014,22(3):1-7.
[17]洪枫,魏斌,杨光. 一种制备中空异形细菌纤维素材料的装置: CN, ZL201020511755.5[P]. 中国实用新型专利, 2010.
[18]Wippermann J, Schumann D, Klemm D, et al. Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. Eur J Vasc Endovasc Surg. 2009;37(5):592-596.
[19]Bäckdahl H, Bo R, Gatenholm P. Observations on bacterial cellulose tube formation for application as vascular graft. Materials Science & Engineering C. 2011; 31(1): 14-21.
[20]Putra A, Kakugo A, Furukawa H, et al. Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer. 2008; 49(7):1885-1891.
[21]Azad AK, Sermsintham N, Chandrkrachang S, et al. Chitosan membrane as a wound-healing dressing: characterization and clinical application. J Biomed Mater Res B Appl Biomater. 2004;69(2):216-222.
[22]Zhang P, Chen L, Zhang Q, et al. Using In situ Dynamic Cultures to Rapidly Biofabricate Fabric-Reinforced Composites of Chitosan/Bacterial Nanocellulose for Antibacterial Wound Dressings. Front Microbiol. 2016;7:260.
[23]Uchegbu IF, Carlos M, Mckay C, et al. Chitosan amphiphiles provide new drug delivery opportunities. Polymer International. 2014; 63(7): 1145-1153.
[24]Brewster LP, Bufallino D, Ucuzian A, et al. Growing a living blood vessel: insights for the second hundred years. Biomaterials. 2007;28(34):5028-5032.
[25]Kong X, Han B, Li H, et al. New biodegradable small-diameter artificial vascular prosthesis: a feasibility study. J Biomed Mater Res A. 2012;100(6):1494-1504.
[26]Kong X, Han B, Wang H, et al. Mechanical properties of biodegradable small-diameter chitosan artificial vascular prosthesis. J Biomed Mater Res A. 2012;100(8):1938-1945.
[27]Tang J, Li X, Bao L, et al. Comparison of two types of bioreactors for synthesis of bacterial nanocellulose tubes as potential medical prostheses including artificial blood vessels. Journal of Chemical Technology & Biotechnology. 2017; 92: 1218-1228.
[28]Leitão AF, Gupta S, Silva JP, et al. Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite. Colloids Surf B Biointerfaces. 2013;111:493-502.
[29]Wang S, Zhang Y, Yin G, et al. Electrospun polylactide/silk fibroin–gelatin composite tubular scaffolds for small-diameter tissue engineering blood vessels. Journal of Applied Polymer Science. 2010; 113(4): 2675-2682. |